Lamellar stacking in three-dimensional crystals of Ca(2+)-ATPase from sarcoplasmic reticulum.

نویسندگان

  • G W Cheong
  • H S Young
  • H Ogawa
  • C Toyoshima
  • D L Stokes
چکیده

Electron microscopy of multilamellar crystals of CA(2+)-ATPase currently offers the best opportunity for obtaining a high-resolution structure of this ATP-driven ion pump. Under certain conditions small, wormlike crystals are formed and provide views parallel to the lamellar plane, from which parameters of lamellar stacking can be directly measured. Assuming that molecular packing is the same, data from these views could supplement those obtained by tilting large, thin platelike crystals. However, we were surprised to discover that the lamellar spacing was variable and depended on the amount of glycerol present during crystallization (20% versus 5%). Projection maps (h,0,l) from these womklike crystals suggest different molecular contacts that give rise to the different lamellar spacings. Based on an orthogonal projection map (h,k,0) from collapsed, wormlike crystals and on x-ray powder patterns, we conclude that molecular packing within the lamellar plane is the same as that in thin, platelike crystals and is unaffected by glycerol. Finally, the orientation of molecules in the lamellar plane was characterized from freeze-dried, shadowed crystals. Comparing the profile of molecules in these multilamellar crystals with that previously observed in helical tubes induced by vanadate gives structural evidence of the conformational change that accompanies binding of calcium of Ca(2+)-ATPase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of the Ca2+-ATPase of sarcoplasmic reticulum.

In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sa...

متن کامل

Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution.

We have used multilamellar crystals of the ATP-driven calcium pump from sarcoplasmic reticulum to address the structural effects of calcium binding to the enzyme. They are stacks of disk-shaped two-dimensional crystals. A density map projected along the lipid bilayer was obtained at 9-A resolution by frozen-hydrated electron microscopy. Although only in projection, much more details of the stru...

متن کامل

Locating phospholamban in co-crystals with Ca(2+)-ATPase by cryoelectron microscopy.

Phospholamban (PLB) is responsible for regulating Ca(2+) transport by Ca(2+)-ATPase across the sarcoplasmic reticulum of cardiac and smooth muscle. This regulation is coupled to beta-adrenergic stimulation, and dysfunction has been associated with end-stage heart failure. PLB appears to directly bind to Ca(2+)-ATPase, thus slowing certain steps in the Ca(2+) transport cycle. We have determined ...

متن کامل

Ca2’-ATPase Membrane Crystals in Sarcoplasmic Reticulum

Vanadate induces the formation of two-dimensional crystalline arrays of Ca2+-ATPase molecules in sarcoplasmic reticulum. The Ca2+-ATPase membrane crystals are evenly distributed among the terminal cisternae and longitudinal tubules of sarcoplasmic reticulum, but very few crystals were observed in the T tubules. Tryptic cleavage of the Ca2+ transport ATPase into two major fragments (A and B) did...

متن کامل

A 2D-IR study of heat- and [(13)C]urea-induced denaturation of sarcoplasmic reticulum Ca(2+)-ATPase.

Two-dimensional infrared correlation spectroscopy (2D-IR) was applied to the study of urea- and heat-induced unfolding denaturation of sarcoplasmic reticulum Ca(2+)-ATPase (SR ATPase). Urea at 2-3 M causes reversible loss of SR ATPase activity, while higher concentrations induce irreversible denaturation. Heat-induced denaturation is a non-two-state process, with an "intermediate state" (at t a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 70 4  شماره 

صفحات  -

تاریخ انتشار 1996